
ST. JEAN DE BREBEUF MATHEMATICS

CHAPTER 1.5 MAKE DECISIONS

USING TRIGONOMETRY

KEY CONCEPTS

Decide which formula or tool to use based on the type of triangle the situation presents.

If the problem is modelled by a <u>right triangle</u>, use the **primary trigonometric ratios**.

If the problem is modelled by an acute or obtuse triangle

→with two angles and a given side or two sides and an opposite angle, use the Sine Law

→with two sides and a contained angle (SAS) or three sides (SSS), use the Cosine Law

CABILAN MATH ONLINE.COM

BASIC TRIGONOMETRIC RATIOS	THE SINE LAW	THE COSINE LAW
$\sin A = \frac{OPPOSITE}{HYPOTENUSE}$ $\cos A = \frac{ADJACENT}{HYPOTENUSE}$	$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$
$tan A = \frac{OPPOSITE}{ADJACENT}$	If the problem is modelled by an acute or obtuse triangle (non-right angled)	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$
If the problem is modelled by a <u>right</u> triangle, use the primary trigonometric ratios.	→with two angles and a given side or →two sides and an opposite angle, use the Sine Law	$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$ $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$

PYTHAGOREAN THEOREM

$$c^2 = a^2 + b^2$$

Pythagorean Theorem is *only* used to solve for a missing side in a <u>right angle</u> triangle

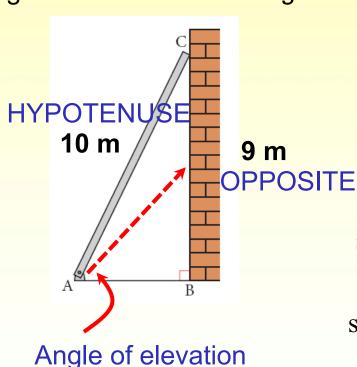
If the problem is modelled by an acute or obtuse triangle (non right angle)
→ with two sides and a contained angle (SAS)

- → You use these formulas to solve for side length
- → Three sides (SSS), use the Cosine Law
- → You use these formulas to solve for angles

THE COSINE LAW

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$


$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

EXAMPLE 1

A **10 m** ladder leans against a wall. The top of the ladder is **9 m** above the ground. What is the *angle of elevation* between the floor and the ladder?

Inverse sin

sin

→ 2nd/Shift then

We have a **RIGHT TRIANGLE**

→ Use basic trigonometric ratios

→ Label the *given* sides (with respect to the angle we are solving for) and determine which trigonometric ratio to use

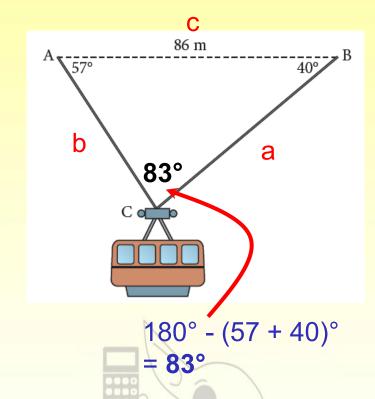
$$\sin A = \frac{OPPOSITE}{HYPOTENUSE}$$

$$\sin A = \frac{9}{10}$$

$$\sin A = 0.9$$

$$\angle A = \sin^{-1}(0.9)$$

$$\angle A = 64^{\circ}$$

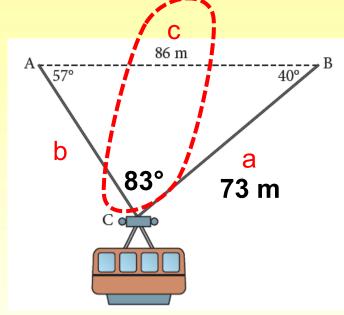

The angle of elevation between the floor and the ladder is **64**°.

FORMULAS

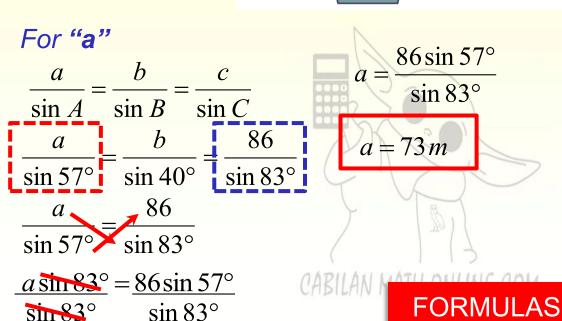
EXAMPLE 2

A cable car stops part of the way across an **86** m wide gorge. The cable holding the car makes an *angle of depression* of **57**° at one end and an *angle of depression* of **40**° at the other end. How long is the cable that holds the car? Round your answer to the <u>nearest</u> metre.

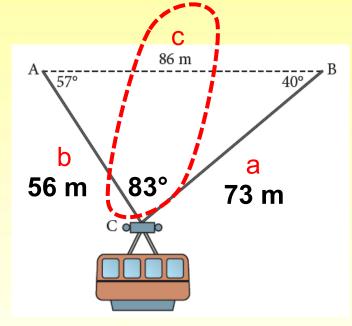
Need to solve for "a" and "b" and add them together!


We are missing information

→ We can solve for the missing angle!


EXAMPLE 2

A cable car stops part of the way across an **86** m wide gorge. The cable holding the car makes an *angle of depression* of **57**° at one end and an *angle of depression* of **40**° at the other end. How long is the cable that holds the car? Round your answer to the <u>nearest</u> metre.


Need to solve for "a" and "b" and add them together!

We have an **angle** and a side *opposite* to the angle → Use **SINE LAW**!

EXAMPLE 2

A cable car stops part of the way across an **86** m wide gorge. The cable holding the car makes an *angle of depression* of **57°** at one end and an *angle of depression* of **40°** at the other end. How long is the cable that holds the car? Round your answer to the <u>nearest</u> metre.

Need to solve for "a" and "b" and add them together!

→Use **SINE LAW!**

The length of the cable that holds the car is **129 metres**.

For "b" (use given info for accuracy!)

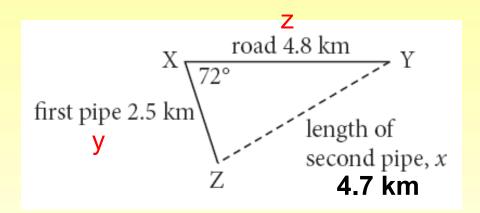
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad b = \frac{86 \sin 40^{\circ}}{\sin 83^{\circ}}$$

$$\frac{73}{\sin 57^{\circ}} = \frac{b}{\sin 40^{\circ}} = \frac{86}{\sin 83^{\circ}} \qquad b = 56m$$

$$\frac{b}{\sin 40^{\circ}} = \frac{86}{\sin 83^{\circ}} \qquad For length of cable$$

$$\frac{b \sin 83^{\circ}}{\sin 83^{\circ}} = \frac{86 \sin 40^{\circ}}{\sin 83^{\circ}} = \frac{73 m + 56 m}{\sin 83^{\circ}} = \frac{129 m}{\sin 83^{\circ}}$$

EXAMPLE 3


A sewer pipe for a new subdivision has to be laid underground. A connection is made to the main service pipe at either end of the 4.8 km stretch of road. One pipe, 2.5 km long, makes an angle of 72° at one end of the road.

(a) Calculate the length of the second pipe

We have an acute/non-right triangle

→side-angle-side (SAS)

→ Use COSINE LAW!

$$x^{2} = y^{2} + z^{2} - 2yz\cos X$$

$$x^{2} = (2.5)^{2} + (4.8)^{2} - 2(2.5)(4.8)(\cos 72^{\circ})$$

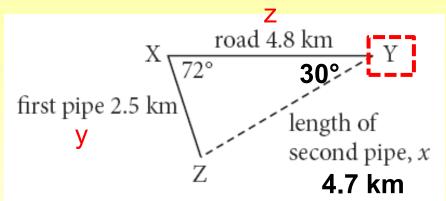
$$x^{2} = 21.8736$$

$$\sqrt{x^{2}} = \sqrt{21.8736}$$

$$x = 4.7$$

The length of the second pipe is **4.7 km**

CHAPTER 15 MAKE DEGISIONS USING TRIG


EXAMPLE 3

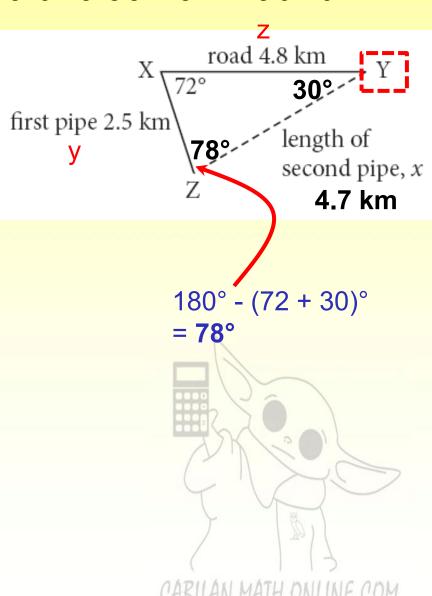
A sewer pipe for a new subdivision has to be laid underground. A connection is made to the main service pipe at either end of the 4.8 km stretch of road. One pipe, 2.5 km long, makes an angle of 72° at one end of the road.

(b) Determine the angle **between the** second pipe and the road

Need to solve for $\angle Y$ → Easiest to use SINE LAW!

> The angle between the second pipe and the road is 30°.

first pipe 2.5 km


$$\frac{x}{\sin X} = \frac{y}{\sin Y} = \frac{z}{\sin Z}$$

 $\frac{4.7}{\sin 72^{\circ}} = \frac{2.5}{\sin Y} = \frac{4.8}{\sin Z}$ sin $Y = 0.5059$
 $\frac{4.7}{\sin 72^{\circ}} = \frac{2.5}{\sin Y}$ $2.5 = 2.5 =$

EXAMPLE 3

A sewer pipe for a new subdivision has to be laid underground. A connection is made to the main service pipe at either end of the 4.8 km stretch of road. One pipe, 2.5 km long, makes an angle of 72° at one end of the road.

(c) What is the angle **between the first pipe and second pipe**?

The angle between the first and second pipe is **78**°.

Homework

Page 48 – 51 #1 – 4, 6 – 8, 10

CABILAN MATH ONLINE.COM

BASIC TRIGONOMETRIC RATIOS

$$\sin A = \frac{OPPOSITE}{HYPOTENUSE}$$

$$\cos A = \frac{ADJACENT}{HYPOTENUSE}$$

$$\tan A = \frac{OPPOSITE}{ADJACENT}$$

SINE LAW

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

COSINE LAW

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos B$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

PREVIOUS

CABILAN MATH ONLINE.COM