Name:	Date:	MFM 2P

CHAPTER 6: Quadratic Relations

DAY	SECTION / TOPIC	SEATWORK / HOMEWORK
1	6.1 - Explore Non-Linear Relations	Page 241 – 244 #1 – 3, 6
2	6.3 - Key Features of Quadratic	Page 260 – 263 #1, 3 (create a
	Relations	table of values and graph), 4, 6
3	6.4 - Rates of Change in Quadratic	Page 269 – 271 #1, 2, 3a – d, 5
	Relations	_
4	Review	Page 272 – 273 #1, 2, 4 (use
	N	table of values), 5, 7
5	CHAPTER 6 TEST	

www.cabilanmathonline.com/mfm2p1

Name:	Date:	MFM 2P1

<u>6.1 – EXPLORE NON-LINEAR RELATIONS</u>

KEY CONCEPTS

A quadratic relation is one type of *non-linear* relation.

- →an equation that describes a parabola
- \rightarrow an equation of the form $y = ax^2 + bx + c$, where $a \neq 0$

The graph of a quadratic relation is called a **parabola**, which is a *symmetrical* U-shaped graph

EXAMPLE 1

Drawing a Line or Curve of Best Fit

Graph the data in each table. Draw a line or curve of best fit. Explain your reason

(a)

У
2
6
10
14
18
22

(b)

X	У
0	24
1	6
2	0
3	6
4	24

Explanation:

Explanation:

Area of a Square **EXAMPLE 2**

The formula for the area of a square is $A = s^2$, where s represents the side length of a square.

Complete the table below and draw a smooth curve through all the points.

Side length (cm)	$A = s^2 (in cm^2)$
0	
1	
2	
3	
4	
5	

<u>Homework:</u> Page 241 – 244 #1 – 3, 6

Name:	Date:	MFM 2P1

6.3 - KEY FEATURES OF QUADRATIC RELATIONS

KEY CONCEPTS

For a quadratic relation in the form $y = ax^2 + bx + c$, where $a \neq 0$

If the *a* value is <u>positive</u>, the parabola <u>opens upward</u> and has a **minimum** value. If the *a* value is <u>negative</u>, the parabola <u>opens downward</u> and has a **maximum** value.

The **vertex** of a parabola is the point at which the parabola changes from decreasing to increasing or from increasing to decreasing.

The **maximum** or **minimum** value is the *y*-coordinate of the vertex.

The **axis of symmetry** is the vertical line that passes through the vertex.

 \rightarrow the equation of the axis of symmetry is x = p, where p is the x-coordinate of the vertex

The **x-intercepts** are the x-coordinates of the points at which the parabola crosses the x-axis.

→ A parabola may have **zero**, **one**, or **two** *x*-intercepts.

Name:	Date:	MFM 2P1

EXAMPLE 1

Identifying Features of a Quadratic Relation, Graph Given

- (a) For the graph on the right,
- 1. Identify the **coordinates** of the vertex
- 2. The equation of axis of symmetry

- 3. The **y-intercept**
- (a) Is it a minimum or maximum? 4. (b) What is the value?
- (a) How many x-intercepts? 5. (b) What is it/what are they?
- (b) For the graph on the *right*,
- 1. Identify the **coordinates** of the vertex
- 2. The equation of axis of symmetry
- 3. The **y-intercept**

4.

(a) How many **x-intercepts**? _____ 5. (b) What is it/what are they?

MFM 2P1

EXAMPLE 2 Key Features of a Quadratic Relation, Equation Given

A quadratic relation is given by the equation $y = x^2 - 2x + 3$.

1. Complete the table of values then graph the data.

X	у
-2	
– 1	
0	
1	
2	

- 2. Identify the **coordinates** of the vertex
- 3. The equation of axis of symmetry
- 4. The **y-intercept**
- 5. (a) Is it a minimum or maximum?
 - (b) What is the value? _____
- 6. (a) How many **x-intercepts**? ____
 - (b) What is it/what are they?

Homework:

Page 260 – 263 #1, 3 (create a table of values and graph), 4, 6

Name:	Date:	MFM 2P1

6.4 - RATES OF CHANGE IN QUADRATIC RELATIONS

KEY CONCEPTS

A quadratic relation can be represented by an equation of the form $y = ax^2 + bx + c$, where $a \neq 0$.

The graph of a quadratic equation has the shape of a parabola.

A quadratic relation has **constant second differences**.

→the difference between consecutive first differences

EXAMPLE

First and Second Differences in Quadratic Relations

A snowboarder makes two runs

PART 1:

In the first run, the snowboarder travels down a ramp to the bottom of the slope.

For this run, the graph comparing height to the horizontal distance from the starting point is **linear**.

(a) Complete the table below and calculate the **first differences**.

Horizontal distance, in metres(x)	Height, in metres (y)	1 st Diff.
1	4.0	
2	3.8	
3	3.6	
4	3.4	
5	3.2	
6	3.0	

Name:	Date:	MFM 2P
	 	—.

(b) What do you notice about the first differences

SUMMARY:

When first differences are ______, the relationship is _____. The graph of this type of a relationship is a _____.

PART 2:

In the second run, the snowboarder travels down one side of a parabolic curve and up the other.

For this run, graphing height against horizontal distance from the starting point produces a parabola.

(a) Complete the table below by calculating the **first** and **second differences**

	Horizontal distance, in metres (x)	Height, in metres (y)	1 st Diff.	2 nd Diff.	
	0	10.8			
	1	7.5			
	2	4.8			
	3	2.7			
	4	1.2			
	5	0.3			
	6	0			
	7	0.3			
	8	1.2			
	9	2.7			
	10	4.8			
	11	7.5			
	12	10.8			

Name:	Da	ate:		MFM 2P1	
(b) What do you notice	(b) What do you notice about the first differences?				
Since the first difference	es are	, this rela	ationship is <u>not</u>		
(c) What do you notice about the second differences?					
SUMMARY:	ancas ara	the relation	achin ic		
When the second differences are, the relationship is The graph of this type of relationship is called a					
0000					
<u>Homework:</u> Page 269 – 271 #1, 2, 3	3a – d, 5	3			

